Package: dtwclust 6.0.0.9000
dtwclust: Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance
Time series clustering along with optimized techniques related to the Dynamic Time Warping distance and its corresponding lower bounds. Implementations of partitional, hierarchical, fuzzy, k-Shape and TADPole clustering are available. Functionality can be easily extended with custom distance measures and centroid definitions. Implementations of DTW barycenter averaging, a distance based on global alignment kernels, and the soft-DTW distance and centroid routines are also provided. All included distance functions have custom loops optimized for the calculation of cross-distance matrices, including parallelization support. Several cluster validity indices are included.
Authors:
dtwclust_6.0.0.9000.tar.gz
dtwclust_6.0.0.9000.zip(r-4.5)dtwclust_6.0.0.9000.zip(r-4.4)dtwclust_6.0.0.9000.zip(r-4.3)
dtwclust_6.0.0.9000.tgz(r-4.4-x86_64)dtwclust_6.0.0.9000.tgz(r-4.4-arm64)dtwclust_6.0.0.9000.tgz(r-4.3-x86_64)dtwclust_6.0.0.9000.tgz(r-4.3-arm64)
dtwclust_6.0.0.9000.tar.gz(r-4.5-noble)dtwclust_6.0.0.9000.tar.gz(r-4.4-noble)
dtwclust_6.0.0.9000.tgz(r-4.4-emscripten)dtwclust_6.0.0.9000.tgz(r-4.3-emscripten)
dtwclust.pdf |dtwclust.html✨
dtwclust/json (API)
NEWS
# Install 'dtwclust' in R: |
install.packages('dtwclust', repos = c('https://asardaes.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/asardaes/dtwclust/issues
- CharTraj - Subset of character trajectories data set
- CharTrajLabels - Subset of character trajectories data set
- CharTrajMV - Subset of character trajectories data set
- dtwclustTimings - Results of timing experiments
Last updated 4 months agofrom:9efcdb04d6. Checks:OK: 3 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win-x86_64 | OK | Nov 20 2024 |
R-4.5-linux-x86_64 | OK | Nov 20 2024 |
R-4.4-win-x86_64 | NOTE | Nov 20 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 20 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 20 2024 |
R-4.3-win-x86_64 | NOTE | Nov 20 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 20 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 20 2024 |
Exports:as.matrixcompare_clusteringscompare_clusterings_configscompute_envelopecvicvi_evaluatorsdbaDBAdtw_basicdtw_lbdtw2fuzzy_controlgakGAKhierarchical_controlinteractive_clusteringlb_improvedlb_keoghNCCcpam_centpartitional_controlpdc_configsplotpredictreinterpolaterepeat_clusteringsbdSBDsdtwsdtw_centshape_extractionshowssdtwclusttadpoleTADPoletadpole_controltsclusttsclust_argstslistupdatezscore
Dependencies:base64encbslibcachemclasscliclueclustercodetoolscolorspacecommonmarkcrayondigestdplyrdtwfansifarverfastmapflexclustfontawesomeforeachfsgenericsggplot2ggrepelgluegtablehtmltoolshttpuvisobanditeratorsjquerylibjsonlitelabelinglaterlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemodeltoolsmunsellnlmepillarpkgconfigplyrpromisesproxyR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelRcppThreadreshape2rlangRSpectrasassscalesshinyshinyjssourcetoolsstringistringrtibbletidyselectutf8vctrsviridisLitewithrxtable
Comparing Time-Series Clustering Algorithms in R Using the dtwclust Package
Rendered fromdtwclust.Rnw
usingknitr::knitr_notangle
on Nov 20 2024.Last update: 2019-09-18
Started: 2016-08-29
Parallelization considerations for dtwclust
Rendered fromparallelization-considerations.Rmd
usingknitr::rmarkdown_notangle
on Nov 20 2024.Last update: 2019-06-29
Started: 2018-01-20
Timing experiments for dtwclust
Rendered fromtiming-experiments.Rmd
usingknitr::rmarkdown_notangle
on Nov 20 2024.Last update: 2019-05-03
Started: 2017-07-29