Package 'table.express'

Title: Build 'data.table' Expressions with Data Manipulation Verbs
Description: A specialization of 'dplyr' data manipulation verbs that parse and build expressions which are ultimately evaluated by 'data.table', letting it handle all optimizations. A set of additional verbs is also provided to facilitate some common operations on a subset of the data.
Authors: Alexis Sarda-Espinosa [cre, aut]
Maintainer: Alexis Sarda-Espinosa <[email protected]>
License: MPL-2.0
Version: 0.4.2
Built: 2025-01-01 04:05:43 UTC
Source: https://github.com/asardaes/table.express

Help Index


Building 'data.table' expressions with data manipulation verbs

Description

A specialization of dplyr verbs, as well as a set of custom ones, that build expressions that can be used within a data.table's frame.

Note

Note that since version 0.3.0, it is not possible to load table.express and dtplyr at the same time, since they define the same data.table methods for many dplyr generics.

Bearing in mind that data.tables are also data.frames, we have to consider that other packages may uses dplyr internally without importing data.table. Since dplyr's methods are generic, calls to these methods in such packages would fail. The functions in this package try to detect when this happens and delegate to the data.frame methods with a warning, which can be safely ignored if you know that the error originates from a package that is not meant to work with data.table. To avoid the warning, use options(table.express.warn.cedta = FALSE).

This software package was developed independently of any organization or institution that is or has been associated with the author.

Author(s)

Alexis Sarda-Espinosa

See Also

Useful links:

Examples

require("data.table")

data("mtcars")

DT <- as.data.table(mtcars)

# ====================================================================================
# Simple dplyr-like transformations

DT %>%
    group_by(cyl) %>%
    filter(vs == 0, am == 1) %>%
    transmute(mean_mpg = mean(mpg)) %>%
    arrange(-cyl)

# Equivalent to previous
DT %>%
    start_expr %>%
    transmute(mean_mpg = mean(mpg)) %>%
    where(vs == 0, am == 1) %>%
    group_by(cyl) %>%
    order_by(-cyl) %>%
    end_expr

# Modification by reference
DT %>%
    where(gear %% 2 != 0, carb %% 2 == 0) %>%
    mutate(wt_squared = wt ^ 2)

print(DT)

# Deletion by reference
DT %>%
    mutate(wt_squared = NULL) %>%
    print

# Support for tidyslect helpers

DT %>%
    select(ends_with("t"))

# ====================================================================================
# Helpers to transform a subset of data

# Like DT[, (whole) := lapply(.SD, as.integer), .SDcols = whole]
whole <- names(DT)[sapply(DT, function(x) { all(x %% 1 == 0) })]
DT %>%
    mutate_sd(as.integer, .SDcols = whole)

sapply(DT, class)

# Like DT[, lapply(.SD, fun), .SDcols = ...]
DT %>%
    transmute_sd((.COL - mean(.COL)) / sd(.COL),
                 .SDcols = setdiff(names(DT), whole))

# Filter several with the same condition
DT %>%
    filter_sd(.COL == 1, .SDcols = c("vs", "am"))

# Using secondary indices, i.e. DT[.(4, 5), on = .(cyl, gear)]
DT %>%
    filter_on(cyl = 4, gear = 5) # note we don't use ==

scale_undim <- function(...) {
    as.numeric(scale(...)) # remove dimensions
}

# Chaining
DT %>%
    start_expr %>%
    mutate_sd(as.integer, .SDcols = whole) %>%
    chain %>%
    filter_sd(.COL == 1, .SDcols = c("vs", "am"), .collapse = `|`) %>%
    transmute_sd(scale_undim, .SDcols = !is.integer(.COL)) %>%
    end_expr

# The previous is quivalent to
DT[, (whole) := lapply(.SD, as.integer), .SDcols = whole
   ][vs == 1 | am == 1,
     lapply(.SD, scale_undim),
     .SDcols = names(DT)[sapply(DT, Negate(is.integer))]]

# Alternative to keep all columns (*copying* non-scaled ones)
scale_non_integers <- function(x) {
    if (is.integer(x)) x else scale_undim(x)
}

DT %>%
    filter_sd(.COL == 1, .SDcols = c("vs", "am"), .collapse = `|`) %>%
    transmute_sd(everything(), scale_non_integers)

# Without copying non-scaled
DT %>%
    where(vs == 1 | am == 1) %>%
    mutate_sd(scale, .SDcols = names(DT)[sapply(DT, Negate(is.integer))])

print(DT)

Arrange rows

Description

Alias for order_by-table.express.

Usage

## S3 method for class 'ExprBuilder'
arrange(.data, ...)

## S3 method for class 'data.table'
arrange(.data, ...)

Arguments

.data

An instance of ExprBuilder.

...

See order_by-table.express.

Details

To see more examples, check the vignette, or the table.express-package entry.


Chain

Description

Build a chain of similar objects/operations.

Usage

chain(.data, ...)

## S3 method for class 'ExprBuilder'
chain(.data, ..., .parent_env = rlang::caller_env())

Arguments

.data

Object to be chained.

...

Arguments for the specific methods.

.parent_env

See end_expr().

Details

The chaining for ExprBuilder is equivalent to calling end_expr() followed by start_expr(). The ellipsis (...) is passed to both functions.

To see more examples, check the vignette, or the table.express-package entry.


Rows with distinct combinations of columns

Description

Rows with distinct combinations of columns

Usage

## S3 method for class 'ExprBuilder'
distinct(
  .data,
  ...,
  .keep = TRUE,
  .n = 1L,
  .parse = getOption("table.express.parse", FALSE)
)

## S3 method for class 'data.table'
distinct(.data, ...)

Arguments

.data

An instance of ExprBuilder.

...

Which columns to use to determine uniqueness.

.keep

See details below.

.n

Indices of rows to return for each unique combination of the chosen columns. See details.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

Details

If .keep = TRUE (the default), the columns not mentioned in ... are also kept. However, if a new column is created in one of the expressions therein, .keep can also be set to a character vector containing the names of all the columns that should be in the result in addition to the ones mentioned in .... See the examples.

The value of .n is only relevant when .keep is not FALSE. It is used to subset .SD in the built data.table expression. For example, we could get 2 rows per combination by setting .n to 1:2, or get the last row instead of the first by using .N. If more than one index is used, and not enough rows are found, some rows will have NA. Do note that, at least as of version 1.12.2 of data.table, only expressions with single indices are internally optimized.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

# compare with .keep = TRUE
data.table::as.data.table(mtcars) %>%
    distinct(amvs = am + vs, .keep = names(mtcars))

Eager frame expression builder

Description

Like ExprBuilder, but eager in some regards. This shouldn't be used directly.

Super class

table.express::ExprBuilder -> EagerExprBuilder

Methods

Public methods

Inherited methods

Method new()

Constructor.

Usage
EagerExprBuilder$new(DT, ...)
Arguments
DT

A data.table::data.table.

...

Ignored.


Method chain()

Override to abort if chaining is attempted.

Usage
EagerExprBuilder$chain(...)
Arguments
...

Ignored.


Method chain_if_set()

Override to abort if chaining is attempted.

Usage
EagerExprBuilder$chain_if_set(...)
Arguments
...

Ignored.


Method clone()

The objects of this class are cloneable with this method.

Usage
EagerExprBuilder$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


End and evaluate expression

Description

Finish the expression-building process and evaluate it.

Usage

end_expr(.data, ...)

## S3 method for class 'ExprBuilder'
end_expr(.data, ..., .by_ref = TRUE, .parent_env)

Arguments

.data

The expression.

...

Arguments for the specific methods.

.by_ref

If FALSE, data.table::copy() is used before evaluation.

.parent_env

Optionally, the enclosing environment of the expression's evaluation environment. Defaults to the caller environment.

Details

The ExprBuilder method returns a data.table::data.table.

To see more examples, check the vignette, or the table.express-package entry.


Frame expression builder

Description

Build an expression that will be used inside a data.table::data.table's frame. This shouldn't be used directly.

Value

In general, a modified self with extended expression.

Active bindings

appends

Extra expressions that go at the end.

expr

The final expression that can be evaluated with base::eval() or rlang::eval_bare().

Methods

Public methods


Method new()

Constructor.

Usage
ExprBuilder$new(
  DT,
  dt_pronouns = list(),
  nested = list(),
  verbose = getOption("table.express.verbose", FALSE)
)
Arguments
DT

A data.table::data.table.

dt_pronouns, nested

Internal parameters for joins.

verbose

Print more information during the process of building expressions.


Method set_i()

Set the i clause expression(s), starting a new frame if the current one already has said expression set.

Usage
ExprBuilder$set_i(value, chain_if_needed)
Arguments
value

A captured expression.

chain_if_needed

Whether chaining is allowed during this step.


Method set_j()

Like set_i but for the j clause.

Usage
ExprBuilder$set_j(value, chain_if_needed)
Arguments
value

A captured expression.

chain_if_needed

Whether chaining is allowed during this step.


Method set_by()

Set the by clause expression.

Usage
ExprBuilder$set_by(value, chain_if_needed)
Arguments
value

A captured expression.

chain_if_needed

Whether chaining is allowed during this step.


Method chain()

By default, start a new expression with the current one as its parent. If type = "pronoun", dt is used to start a new expression that joins the current one.

Usage
ExprBuilder$chain(type = "frame", next_dt, parent_env, to_eager = FALSE)
Arguments
type

One of "frame", "pronoun".

next_dt

Next data table when chaining pronoun.

parent_env

Where to evaluate current expression when chaining pronoun.

to_eager

Whether or not to use an EagerExprBuilder in the new chain


Method chain_if_set()

Chain if any clause values are already set.

Usage
ExprBuilder$chain_if_set(...)
Arguments
...

Clause values.


Method seek_and_nestroy()

Helper for nest_expr.

Usage
ExprBuilder$seek_and_nestroy(.exprs)
Arguments
.exprs

List of expressions.


Method eval()

Evaluate the final expression with parent_env as the enclosing environment. If by_ref = FALSE, data.table::copy() is called before. The ellipsis' contents are assigned to the expression's evaluation environment.

Usage
ExprBuilder$eval(parent_env, by_ref, ...)
Arguments
parent_env

Enclosing environment.

by_ref

Flag to control deep copies.

...

Additional variables for the evaluation environment.


Method tidy_select()

Evaluate a tidyselect call using the currently captured table.

Usage
ExprBuilder$tidy_select(select_expr)
Arguments
select_expr

The selection expression.


Method print()

Prints the built expr.

Usage
ExprBuilder$print(...)
Arguments
...

Ignored.


Method clone()

The objects of this class are cloneable with this method.

Usage
ExprBuilder$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


Find rows with extrema in specific columns

Description

Find rows with maxima/minima in given columns.

Usage

max_by(.data, .col, ...)

## S3 method for class 'ExprBuilder'
max_by(
  .data,
  .col,
  ...,
  .some = FALSE,
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'data.table'
max_by(.data, .col, ..., .expr = FALSE)

min_by(.data, .col, ...)

## S3 method for class 'ExprBuilder'
min_by(
  .data,
  .col,
  ...,
  .some = FALSE,
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'data.table'
min_by(.data, .col, ..., .expr = FALSE)

Arguments

.data

An instance of ExprBuilder.

.col

A character vector indicating the columns that will be searched for extrema.

...

Optionally, columns to group by, either as characters or symbols.

.some

If TRUE the rows where any of the columns specified in .col have extrema are returned.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.expr

If the input is a data.table and .expr is TRUE, an instance of EagerExprBuilder will be returned. Useful if you want to add clauses to j, e.g. with mutate-table.express.

Details

These verbs implement the idiom shown here by leveraging nest_expr(). The whole nested expression is assigned to i in the data.table's frame. It is probably a good idea to use this on a frame that has no other frames preceding it in the current expression, given that nest_expr() uses the captured data.table, so consider using chain() when needed.

Several columns can be specified in .col, and depending on the value of .some, the rows with all or some extrema are returned, using & or | respectively. Depending on your data, using more than one column might not make sense, resulting in an empty data.table.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    max_by("mpg", "vs")

Filter with secondary indices

Description

Helper to filter specifying the on part of the data.table::data.table query.

Usage

filter_on(.data, ...)

## S3 method for class 'ExprBuilder'
filter_on(
  .data,
  ...,
  which = FALSE,
  nomatch = getOption("datatable.nomatch"),
  mult = "all",
  .negate = FALSE,
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'data.table'
filter_on(.data, ..., .expr = FALSE)

Arguments

.data

An instance of ExprBuilder.

...

Key-value pairs, maybe with empty keys if the data.table already has them. See details.

which, nomatch, mult

See data.table::data.table.

.negate

Whether to negate the expression and search only for rows that don't contain the given values.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.expr

If the input is a data.table and .expr is TRUE, an instance of EagerExprBuilder will be returned. Useful if you want to add clauses to j, e.g. with mutate-table.express.

Details

The key-value pairs in '...' are processed as follows:

  • The names are used as on in the data.table frame. If any name is empty, on is left missing.

  • The values are packed in a list and used as i in the data.table frame.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    filter_on(cyl = 4, gear = 5)

Filter subset of data

Description

Helper to filter rows with the same condition applied to a subset of the data.

Usage

filter_sd(.data, .SDcols, .how = Negate(is.na), ...)

## S3 method for class 'ExprBuilder'
filter_sd(
  .data,
  .SDcols,
  .how = Negate(is.na),
  ...,
  which,
  .collapse = `&`,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE),
  .caller_env_n = 1L
)

## S3 method for class 'data.table'
filter_sd(.data, ..., .expr = FALSE)

Arguments

.data

An instance of ExprBuilder.

.SDcols

See data.table::data.table and the details here.

.how

The filtering function or predicate.

...

Possibly more arguments for .how.

which

Passed to data.table::data.table.

.collapse

See where-table.express.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.caller_env_n

Internal. Passed to rlang::caller_env() to find the function specified in .how and standardize its call.

.expr

If the input is a data.table and .expr is TRUE, an instance of EagerExprBuilder will be returned. Useful if you want to add clauses to j, e.g. with mutate-table.express.

Details

This function adds/chains an i expression that will be evaluated by data.table::data.table, and it supports the .COL pronoun and lambdas as formulas. The .how condition is applied to all .SDcols.

Additionally, .SDcols supports:

  • tidyselect::select_helpers

  • A predicate using the .COL pronoun that should return a single logical when .COL is replaced by a column of the data.

  • A formula using . or .x instead of the aforementioned .COL.

The caveat is that the expression is evaluated eagerly, i.e. with the currently captured data.table. Consider using chain() to explicitly capture intermediate results as actual data.tables.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    filter_sd(c("vs", "am"), ~ .x == 1)

Filter rows

Description

Filter rows

Usage

## S3 method for class 'ExprBuilder'
filter(.data, ..., .preserve)

## S3 method for class 'data.table'
filter(.data, ...)

Arguments

.data

An instance of ExprBuilder.

...

See where-table.express.

.preserve

Ignored.

Details

The ExprBuilder method is an alias for where-table.express.

The data.table::data.table method works eagerly like dplyr::filter().

To see more examples, check the vignette, or the table.express-package entry.


Append expressions to the frame

Description

Add named expressions for the data.table::data.table frame.

Usage

frame_append(.data, ..., .parse = getOption("table.express.parse", FALSE))

Arguments

.data

An instance of ExprBuilder.

...

Expressions to add to the frame.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

Examples

data.table::data.table() %>%
    start_expr %>%
    frame_append(anything = "goes")

Grouping clauses

Description

Grouping by columns of a data.table::data.table.

Usage

## S3 method for class 'ExprBuilder'
group_by(
  .data,
  ...,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'data.table'
group_by(.data, ...)

Arguments

.data

An instance of ExprBuilder.

...

Clause for grouping on columns. The by inside the data.table's frame.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

Details

Everything in ... will be wrapped in a call to list.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    start_expr %>%
    group_by(cyl, gear)

Joining verbs

Description

Two-table joins. Check the "Joining verbs" vignette for more information.

Usage

## S3 method for class 'ExprBuilder'
anti_join(x, y, ...)

## S3 method for class 'data.table'
anti_join(x, ..., .expr = FALSE)

## S3 method for class 'ExprBuilder'
full_join(x, y, ..., sort = TRUE, allow = TRUE, .parent_env)

## S3 method for class 'data.table'
full_join(x, ...)

## S3 method for class 'ExprBuilder'
inner_join(x, y, ...)

## S3 method for class 'data.table'
inner_join(x, ..., .expr = FALSE)

## S3 method for class 'ExprBuilder'
left_join(
  x,
  y,
  ...,
  nomatch,
  mult,
  roll,
  rollends,
  .parent_env,
  .to_eager = FALSE
)

## S3 method for class 'data.table'
left_join(x, y, ..., allow = FALSE, .expr = FALSE)

mutate_join(x, y, ...)

## S3 method for class 'ExprBuilder'
mutate_join(
  x,
  y,
  ...,
  .SDcols,
  mult,
  roll,
  rollends,
  allow = FALSE,
  .by_each = NULL,
  .parent_env
)

## S3 method for class 'EagerExprBuilder'
mutate_join(x, ..., .parent_env = rlang::caller_env())

## S3 method for class 'data.table'
mutate_join(x, y, ...)

## S3 method for class 'ExprBuilder'
right_join(
  x,
  y,
  ...,
  allow = FALSE,
  which,
  nomatch,
  mult,
  roll,
  rollends,
  .selecting,
  .framing
)

## S3 method for class 'data.table'
right_join(x, y, ..., allow = FALSE, .expr = FALSE, .selecting, .framing)

## S3 method for class 'ExprBuilder'
semi_join(x, y, ..., allow = FALSE, .eager = FALSE)

## S3 method for class 'data.table'
semi_join(x, y, ..., allow = FALSE, .eager = FALSE)

Arguments

x

An ExprBuilder instance.

y

A data.table::data.table or, for some verbs (see details), a call to nest_expr().

...

Expressions for the on part of the join.

.expr

If the input is a data.table and .expr is TRUE, an instance of EagerExprBuilder will be returned. Useful if you want to add clauses to j, e.g. with mutate-table.express.

sort

Passed to data.table::merge.

allow

Passed as data.table's allow.cartesian.

.parent_env

See end_expr().

nomatch, mult, roll, rollends

See data.table::data.table.

.to_eager

Internal, should be left as FALSE in all external calls.

.SDcols

For mutate_join. See the details below.

.by_each

For mutate_join. See the details below.

which

If TRUE, return the row numbers that matched in x instead of the result of the join.

.selecting

One or more expressions, possibly contained in a call to list or ., that will be added to j in the same frame as the join.

.framing

Similar to .selecting, but added to the frame with frame_append().

.eager

For semi_join. If TRUE, it uses nest_expr() to build an expression like this instead of the default one. This uses the captured data.table eagerly, so use chain() when needed. The default is lazy.

Details

The following joins support nest_expr() in y:

  • anti_join

  • inner_join

  • right_join

The full_join method is really a wrapper for data.table::merge that specifies all = TRUE. The expression in x gets evaluated, merged with y, and the result is captured in a new ExprBuilder. Useful in case you want to keep building expressions after the merge.

Mutating join

The ExprBuilder method for mutate_join implements the idiom described in this link. The columns specified in .SDcols are those that will be added to x from y. The specification can be done by:

  • Using tidyselect::select_helpers.

  • Passing a character vector. If the character is named, the names are taken as the new column names for the values added to x.

  • A list, using base::list() or .(), containing:

    • Column names, either as characters or symbols.

    • Named calls expressing how the column should be summarized/modified before adding it to x.

The last case mentioned above is useful when the join returns many rows from y for each row in x, so they can be summarized while joining. The value of by in the join depends on what is passed to .by_each:

  • If NULL (the default), by is set to .EACHI if a call is detected in any of the expressions from the list in .SDcols

  • If TRUE, by is always set to .EACHI

  • If FALSE, by is never set to .EACHI

See Also

data.table::data.table, dplyr::join

Examples

lhs <- data.table::data.table(x = rep(c("b", "a", "c"), each = 3),
                              y = c(1, 3, 6),
                              v = 1:9)

rhs <- data.table::data.table(x = c("c", "b"),
                              v = 8:7,
                              foo = c(4, 2))


rhs %>%
    anti_join(lhs, x, v)


lhs %>%
    inner_join(rhs, x)


# creates new data.table
lhs %>%
    left_join(rhs, x)


# would modify lhs by reference
lhs %>%
    start_expr %>%
    mutate_join(rhs, x, .SDcols = c("foo", rhs.v = "v"))

# would modify rhs by reference, summarizing 'y' before adding it.
rhs %>%
    start_expr %>%
    mutate_join(lhs, x, .SDcols = .(y = mean(y)))


# creates new data.table
lhs %>%
    right_join(rhs, x)


# keep only columns from lhs
lhs %>%
    semi_join(rhs, x)

Set key to group by

Description

Group by setting key of the input.

Usage

key_by(.data, ...)

## S3 method for class 'ExprBuilder'
key_by(
  .data,
  ...,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'data.table'
key_by(.data, ...)

Arguments

.data

Object to be grouped and subsequently keyed.

...

Arguments for the specific methods.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

Details

Everything in ... will be wrapped in a call to list. Its contents work like Clauses for grouping on columns. The keyby inside the data.table::data.table frame.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    start_expr %>%
    key_by(cyl, gear)

Mutate subset of data

Description

Like mutate-table.express but possibly recycling calls.

Usage

mutate_sd(.data, .SDcols, .how = identity, ...)

## S3 method for class 'ExprBuilder'
mutate_sd(
  .data,
  .SDcols,
  .how = identity,
  ...,
  .pairwise = TRUE,
  .prefix,
  .suffix,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'EagerExprBuilder'
mutate_sd(.data, ..., .parent_env = rlang::caller_env())

## S3 method for class 'data.table'
mutate_sd(.data, ...)

Arguments

.data

An instance of ExprBuilder.

.SDcols

See data.table::data.table and the details here.

.how

The function(s) or function call(s) that will perform the transformation. If many, a list should be used, either with list() or .(). If the list is named, the names will be used for the new columns' names. Lambdas specified as formulas are supported.

...

Possibly more arguments for all functions/calls in .how.

.pairwise

If FALSE, each function in .how is applied to each column in .SDcols (like a cartesian product).

.prefix, .suffix

Only relevant when .how is a function: add a prefix or suffix to the new column's name. If neither is missing, .prefix has preference.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.parent_env

See end_expr()

Details

This function works similar to transmute_sd() but keeps all columns and can modify by reference, like mutate-table.express. It can serve like dplyr's scoped mutation variants depending on what's given to .SDcols.

Additionally, .SDcols supports:

  • tidyselect::select_helpers

  • A predicate using the .COL pronoun that should return a single logical when .COL is replaced by a column of the data.

  • A formula using . or .x instead of the aforementioned .COL.

The caveat is that the expression is evaluated eagerly, i.e. with the currently captured data.table. Consider using chain() to explicitly capture intermediate results as actual data.tables.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    start_expr %>%
    mutate_sd(c("mpg", "cyl"), ~ .x * 2)

Add or update columns

Description

Add or update columns of a data.table::data.table, possibly by reference using :=.

Usage

## S3 method for class 'ExprBuilder'
mutate(
  .data,
  ...,
  .sequential = FALSE,
  .unquote_names = TRUE,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'EagerExprBuilder'
mutate(.data, ..., .parent_env = rlang::caller_env())

## S3 method for class 'data.table'
mutate(.data, ...)

Arguments

.data

An instance of ExprBuilder.

...

Mutation clauses.

.sequential

If TRUE, each expression in ... is assigned to a nested body within curly braces to allow them to use variables created by previous expressions. The default is FALSE because enabling this may turn off some data.table optimizations.

.unquote_names

Passed to rlang::enexprs(). Set to FALSE if you want to pass the single := expression.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.parent_env

See end_expr()

Details

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")
data.table::as.data.table(mtcars) %>%
    start_expr %>%
    mutate(mpg_squared = mpg ^ 2)

Nest expressions as a functional chain

Description

Nest expressions as a functional chain

Usage

nest_expr(
  ...,
  .start = TRUE,
  .end = .start,
  .parse = getOption("table.express.parse", FALSE)
)

Arguments

...

Expressions that will be part of the functional chain.

.start

Whether to add a start_expr() call at the beginning of the chain.

.end

Whether to add an end_expr() call at the end of the chain.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

Details

All expressions in ... are "collapsed" with %>%, passing the ExprBuilder's captured data.table as the initial parameter. Names are silently dropped.

The chain is evaluated eagerly and saved in the ExprBuilder instance to be used during final expression evaluation.

To see more examples, check the vignette, or the table.express-package entry.


Order by clause

Description

Clause for ordering rows.

Usage

order_by(.data, ...)

## S3 method for class 'ExprBuilder'
order_by(
  .data,
  ...,
  .collapse,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'data.table'
order_by(.data, ...)

Arguments

.data

The input data.

...

Arguments for the specific methods.

.collapse

Ignored. See details.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

Details

The ExprBuilder method dispatches to where-table.express, but doesn't forward the .collapse argument.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    order_by(-cyl, gear)

Select clause

Description

Select columns of a data.table::data.table.

Usage

## S3 method for class 'ExprBuilder'
select(
  .data,
  ...,
  .negate = FALSE,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'EagerExprBuilder'
select(.data, ..., .parent_env = rlang::caller_env())

## S3 method for class 'data.table'
select(.data, ...)

Arguments

.data

An instance of ExprBuilder.

...

Clause for selecting columns. For j inside the data.table's frame.

.negate

Whether to negate the selection semantics and keep only columns that do not match what's given in ....

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.parent_env

See end_expr()

Details

The expressions in ... support tidyselect::select_helpers.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    select(mpg:cyl)

Start expression

Description

Start building an expression.

Usage

start_expr(.data, ...)

## S3 method for class 'data.table'
start_expr(.data, ..., .verbose = getOption("table.express.verbose", FALSE))

Arguments

.data

Optionally, something to capture for the expression.

...

Arguments for the specific methods.

.verbose

Whether to print more information during the expression-building process.

Details

The data.table::data.table method returns an ExprBuilder instance.

To see more examples, check the vignette, or the table.express-package entry.


Summarize columns

Description

Compute summaries for columns, perhaps by group.

Usage

## S3 method for class 'ExprBuilder'
summarize(
  .data,
  ...,
  .assume_optimized = NULL,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'ExprBuilder'
summarise(
  .data,
  ...,
  .assume_optimized = NULL,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'EagerExprBuilder'
summarize(.data, ..., .parent_env = rlang::caller_env())

## S3 method for class 'EagerExprBuilder'
summarise(.data, ..., .parent_env = rlang::caller_env())

## S3 method for class 'data.table'
summarize(.data, ...)

## S3 method for class 'data.table'
summarise(.data, ...)

Arguments

.data

An instance of ExprBuilder.

...

Clauses for transmuting columns. For j inside the data.table's frame.

.assume_optimized

An optional character vector with function names that you know data.table can optimize. This will be added to this set of known names: min, max, mean, median, var, sd, sum, prod, first, last. Note that using those functions (and only those in a given call to this function) will prevent the expressions from using variables created by previous expressions.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.parent_env

See end_expr()

Details

The built expression is similar to what transmute builds, but the function also checks that the results have length 1.

To see more examples, check the vignette, or the table.express-package entry.


Transmute subset of data

Description

Like transmute-table.express but for a single call and maybe specifying .SDcols.

Usage

transmute_sd(.data, .SDcols = everything(), .how = identity, ...)

## S3 method for class 'ExprBuilder'
transmute_sd(
  .data,
  .SDcols = everything(),
  .how = identity,
  ...,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'EagerExprBuilder'
transmute_sd(.data, ..., .parent_env = rlang::caller_env())

## S3 method for class 'data.table'
transmute_sd(.data, ...)

Arguments

.data

An instance of ExprBuilder.

.SDcols

See data.table::data.table and the details here.

.how

The function(s) or function call(s) that will perform the transformation. If many, a list should be used, either with list() or .(). If the list is named, the names will be used for the new columns' names. Lambdas specified as formulas are supported.

...

Possibly more arguments for all functions/calls in .how.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.parent_env

See end_expr()

Details

Like transmute-table.express, this function never modifies the input by reference. This function adds/chains a select expression that will be evaluated by data.table::data.table, possibly specifying the helper function .transmute_matching, which is assigned to the final expression's evaluation environment when calling end_expr() (i.e., ExprBuilder's eval method).

Said function supports two pronouns that can be used by .how and .SDcols:

  • .COL: the actual values of the column.

  • .COLNAME: the name of the column currently being evaluated.

Additionally, lambdas specified as formulas are also supported. In those cases, .x is equivalent to .COL and .y to .COLNAME.

Unlike a call like DT[, (vars) := expr], .SDcols can be created dynamically with an expression that evaluates to something that would be used in place of vars without eagerly using the captured data.table. See the examples here or in table.express-package.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    transmute_sd(~ grepl("^d", .y), ~ .x * 2)

data.table::as.data.table(mtcars) %>%
    transmute_sd(~ is.numeric(.x), ~ .x * 2)

Compute new columns

Description

Compute and keep only new columns.

Usage

## S3 method for class 'ExprBuilder'
transmute(
  .data,
  ...,
  .enlist = TRUE,
  .sequential = FALSE,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'EagerExprBuilder'
transmute(.data, ..., .parent_env = rlang::caller_env())

## S3 method for class 'data.table'
transmute(.data, ...)

Arguments

.data

An instance of ExprBuilder.

...

Clauses for transmuting columns. For j inside the data.table's frame.

.enlist

See details.

.sequential

If TRUE, each expression in ... is assigned to a nested body within curly braces to allow them to use variables created by previous expressions. The default is FALSE because enabling this may turn off some data.table optimizations.

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

.parent_env

See end_expr()

Details

Everything in ... is wrapped in a call to list by default. If only one expression is given, you can set .enlist to FALSE to skip the call to list.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    transmute(ans = mpg * 2)

Where clause

Description

Clause for subsetting rows.

Usage

where(.data, ...)

## S3 method for class 'ExprBuilder'
where(
  .data,
  ...,
  which,
  .collapse = `&`,
  .parse = getOption("table.express.parse", FALSE),
  .chain = getOption("table.express.chain", TRUE)
)

## S3 method for class 'data.table'
where(.data, ...)

Arguments

.data

The input data.

...

Arguments for the specific methods.

which

Passed to data.table::data.table.

.collapse

A boolean function which will be used to "concatenate" all conditions in ....

.parse

Logical. Whether to apply rlang::parse_expr() to obtain the expressions.

.chain

Logical. Should a new frame be automatically chained to the expression if the clause being set already exists?

Details

For ExprBuilder, the expressions in ... can call nest_expr(), and are eagerly nested if they do.

The data.table::data.table method is lazy, so it expects another verb to follow afterwards.

To see more examples, check the vignette, or the table.express-package entry.

Examples

data("mtcars")

data.table::as.data.table(mtcars) %>%
    start_expr %>%
    where(vs == 0, am == 1)


data.table::as.data.table(mtcars) %>%
    where(vs == 0) %>%
    transmute(mpg = round(mpg))